Python Notes for Class 11 — Complete
Guide (2025)

Learn the basics of Python step by step with examples and practice

By Webdox Computer Institute

https://gamma.app/?utm_source=made-with-gamma

Introduction to Python

What is Python?

Python is a high-level programming language that's
easy to learn and powerful to use. Created by Guido
van Rossum in 1991, Python has become one of the
most popular languages in the world.

Key Features

* Simple and readable syntax

® Open-source and free

® Works on all operating systems
®* Huge community support

e Thousands of libraries available

Artificial Intelligence Web Development

Machine learning and Al development Building websites and web apps
e

Data Science Automation

Analyzing and visualizing data Automating repetitive tasks

https://gamma.app/?utm_source=made-with-gamma

Python Installation and Setup

01

Download Python

Visit python.org and download the latest
version for your operating system (Windows,
Mac, or Linux).

03

Choose Your Editor

You can use IDLE (comes with Python) or

install VS Code for a better coding experience.

Both are great for beginners.

Your First Python Program

print("Hello, Python!")
print("Welcome to Class 11 Programming!")

Output:

Hello, Python!
Welcome to Class 11 Programming!

02

Install Python

Run the installer and make sure to check "Add
Python to PATH" during installation. This
allows you to run Python from anywhere on
your computer.

04

Write Your First Program

Open your editor and type your first line of
code. It's that simple to get started!

https://www.python.org/
https://gamma.app/?utm_source=made-with-gamma

Python Basics

Keywords and Identifiers Variables

Keywords are reserved words in Python that Variables store data values. In Python, you
have special meanings. Examples: if, for, don't need to declare the type - Python
while def class figures it out automatically!

Identifiers are names you give to variables, .)
name = "Rahul

functions, and other objects. Rules:
age =16

e Must start with a letter or underscore height = 5.8

® Can contain letters, numbers, and is_student = True

underscores

® Cannot be a keyword

® Case-sensitive (age and Age are different)

Data Types in Python

Integer (int) Float

Whole numbers Decimal numbers
marks = 95 price = 99.50

String (str) Boolean (bool)

Text in quotes True or False
name = "Python" passed = True

Input and Output Functions

name = input("Enter your name: ")
age = int(input("Enter your age: "))
print("Hello,", name, "l You are", age, "years old.")

https://gamma.app/?utm_source=made-with-gamma

Operators in Python

— ——

Arithmetic Operators Relational Operators
Used for mathematical calculations Compare two values and return True or
False

e + Addition:5+3=8

e - Subtraction:5-3=2 ® ==Fqualto:5==5isTrue

. . . = N = i
e * Multiplication: 5* 3 = 15 ® I=Notequal:5!=3isTrue

e /Division: 10/2=5.0 ® >Greater than:5>3is True
* //Floor Division: 10//3 =3 * WlcssiEhanis <oisrue
e % Modulus: 10% 3 = 1 * >=Greater or equal: 5>=5is True

o **Exponent:2**3=8 e <=lessorequal:3<=5isTrue

—— —0O0—

Logical Operators Assignment Operators

Combine multiple conditions Assign values to variables

® and Both must be True ® =Assign:x=5

® or At least one must be True e +=Addand assign: X +=3 (x = X + 3)
® not Reverses the condition e -=Subtract and assign: x =2

e *= Multiply and assign: x *=2
age =16 ® /=Divide and assign: x /=2
if age > 13 and age < 20:

print("Teenager")

https://gamma.app/?utm_source=made-with-gamma

Conditional Statements

Conditional statements let your program make decisions based on conditions. Think of it like a
flowchart where your code takes different paths based on whether something is true or false.

Basic If Statement

marks = 85
if marks >=75:
print("You got Grade Al")

print("Excellent work!")

Output: You got Grade A! Excellent work!

If-Else Statement

age =15

if age >=18:
print("You can vote!")
else:
print("You cannot vote yet.")

Output: You cannot vote yet.

If-Elif-Else Statement

Use elif (else if) when you have multiple conditions to check.

marks = 82

if marks >= 90:
grade = "A+"
elif marks >=75:
grade ="A"
elif marks >= 60:
grade ="B"
elif marks >= 45:

https://gamma.app/?utm_source=made-with-gamma

Loops in Python

Loops help you repeat a block of code multiple times without writing it again and again. Python

has two types of loops: for and while.

2 5

For Loop While Loop
Used when you know how many times to Repeats as long as a condition is True
repeat
count=1
foriin range(1, 6): while count <= 5:
print(i) print(count)
count +=1

Output: 12345
Output: 12345

Break Statement Continue Statement
Stops the loop immediately Skips the current iteration
foriin range(1, 11): foriinrange(1, 6):
ifi==6: ifi==3:
break continue
print(i) print(i)
Output: 12345 Output: 1245

Practical Example: Sum of Numbers

numbers =[10, 20, 30, 40, 50]
total =0

for num in numbers:
total += num

print("Sum:", total)

https://gamma.app/?utm_source=made-with-gamma

Strings and Lists

Working with Strings

A @ pfi‘\; : ': : //’\V
A string is a sequence of characters enclosed in M [:5,5 ‘@ b L F L@

quotes. Strings are one of the most commonly

used data types in Python. l——“w E J M Pr< L M
text = "Python Programming" [L|’< '1—_, M N & Lo N
Indexing (0-based) @ P @ R S T U

print(text[0]) #P

print(text[-1]) #g V ; ¥ W W XYZ

Slicing
print(text[0:6]) # Python
print(text[7:]) # Programming

Common String Methods

® upper() - Converts to uppercase
* Jower() - Converts to lowercase
® strip() - Removes whitespace

* replace() - Replaces characters
* split() - Splits into a list

® len()- Returns length

Working with Lists

A list is a collection of items that can be of different types. Lists are ordered, changeable, and
allow duplicate values.

mon

fruits = ["apple", "banana", "cherry", "date"]

Accessing elements
print(fruits[0]) # apple
print(fruits[-1]) # date

https://gamma.app/?utm_source=made-with-gamma

Tuples and Dictionaries

Tuples Dictionaries
A tuple is similar to a list, but it's immutable A dictionary stores data in key-value pairs.
—once created, you cannot change its values. Think of it like a real dictionary where you
Tuples are faster and safer for data that look up a word (key) to find its meaning
shouldn't change. (value).

coordinates = (10, 20, 30) student = {

print(coordinates[0]) # 10 "name": "Priya",

"age": 16,
This will cause an error: "grade": "A",
coordinates[0] = 15 "school": "DPS"
}

Key Differences
print(student["name"]) # Priya

® List: Use square brackets [], changeable orint(student["grade"]) # A

* Tuple: Use parentheses (), unchangeable

Add new entry
student["city"] = "Delhi"

Modify existing entry
student["age"] =17

Dictionary Methods

keys() values()

Returns all keys Returns all values
student.keys() student.values()

items() get()

Returns key-value pairs Safe way to access values

student.items() student.get("name")

https://gamma.app/?utm_source=made-with-gamma

Functions, File Handling & Practice
Programs

Functions in Python

A function is a reusable block of code that
o 2o o 21 b, e
performs a specific task. Functions help e

] e Teet |,
14 calapy TN M Tt e

Lp:

(2Lt it cogey,

TUNL g g,

o llm.::," (ther' i gygry,
4 Mietberraly);
Cancer ¢

“blan(| lummh./r-.nmll'

and faltenerin on Unertoq)
]

“Wtton colctiont (1 -
2 sader fo:

organize code and avoid repetition.

def add_numbers(a, b):
result=a+b

SESNBESESEREEEEES S

foral Lesgiie-eacttion’t Lees fenll)y
' laceneci\ (hix fior Ematteryet);

return result

answer = add_numbers(10, 5)
print(@answer) # 15 o

File Handling Basics

Python can read and write files easily.

Writing to a file

file = open("data.txt", "w")
file.write("Hello, Python!")
file.close()

Reading from a file

file = open("data.txt", "r")
content = file.read()
print(content)

file.close()

Practice Programs for Class 11 Exams

a

Find Largest Number Check Palindrome

https://gamma.app/?utm_source=made-with-gamma

File Handling in Python

File handling is an essential part of any application that needs to store and retrieve data.
Python makes it easy to work with files, allowing you to read data from them, write new data to

them, or append existing content.

Open a File

Use the open() function to get a file
object. This function requires the file
path and the mode.

Read from a File

Once opened, use methods like read(),

readline(), or readlines() to access the
content.

Write to a File

Use the write() or writelines() method to
add text to the file. Be careful with write
mode as it overwrites existing content.

File Modes

When opening a file, you specify a mode
indicating how the file will be used:

e "r"-Read mode (default). Error if file
doesn't exist.

e "w"-Write mode. Creates file if it doesn't
exist, overwrites if it does.

e "3"-Append mode. Creates file if it
doesn't exist, adds to end if it does.

e "x"-Create mode. Creates a new file,
errors if it exists.

e "t"-Text mode (default). For text files.

e "b"-Binary mode. For non-text files like
images or executables.

Close a File

Always close the file using close() to free

up resources. The with statement is

recommended for automatic closing.

https://gamma.app/?utm_source=made-with-gamma

Practical Programs & Exam Preparation

To solidify your understanding of Python concepts, consistent practice is crucial. The following
program types are essential for building foundational skills and preparing for your Class 11
exams. We've already covered code examples for these in previous sections; focus on
understanding the logic and applying variations.

Finding Largest Number Checking Palindromes

Master comparison operators and Strengthen string manipulation and
conditional logic. reversal techniques.

Counting Vowels/Characters Sum of Even Numbers

Reinforce looping through strings and Practice iteration and conditional
character checks. summation within lists or ranges.

Common Errors and Debugging Tips

Understanding common errors and how to debug them is a vital skill for any programmer. Don't
be discouraged by errors; view them as opportunities to learn.

Indentation Errors Type Errors Logical Errors

Python relies heavily on Occur when an These are the trickiest.
consistent indentation. operation is performed Your code runs without
Incorrect spacing (e.g., on an inappropriate data crashing, but produces
mixing spaces and tabs, type (e.g., adding a incorrect results. They
or inconsistent indent string to an integer). require careful review of
levels) will lead to Python is strongly your algorithm, variable
IndentationError. Always typed, so explicit type values, and conditional
use 4 spaces for conversion might be logic. Use print()
indentation. needed. statements or a

debugger to trace

Correct # Incorrect execution.
if x> 0: name = "Alice"
print("Positive") age =20 # Example of a

print(name + age) logical error

https://gamma.app/?utm_source=made-with-gamma

Conclusion

As we wrap up our comprehensive guide to Python for Class 11, it's clear that you've built a
robust foundation in programming. We've journeyed through the core concepts, from

understanding basic data types and operators to mastering conditional statements and loops
for control flow. You've learned to manipulate data structures like strings, lists, tuples, and
dictionaries, and discovered the power of functions to write reusable code. Finally, we explored

file handling, equipping you with the ability to manage external data effectively.

Python is more than just a subject for exams; it's a versatile tool that opens doors to countless

possibilities. The skills you've acquired are highly transferable and will serve as a crucial

stepping stone for future academic and professional endeavors.

&

Unlocking Career
Opportunities

Python is a cornerstone
in fields like Artificial
Intelligence, Machine
Learning, Data Science,
Web Development, and
Automation. Your
foundational knowledge
prepares you for
advanced studies and a
wide array of high-
demand tech roles.

M

Enhancing Problem-
Solving Skills

Programming inherently
teaches you to break
down complex problems
into manageable steps.
This logical thinking and
structured approach are
invaluable life skills,
applicable far beyond
coding.

[=]=]
[=]=]

Foundation for Future
Innovation

The concepts learned
here are universal across
many programming
languages. By
understanding Python,
you're not just learning
one language, but
developing a
computational mindset
that will allow you to
adapt and innovate in a
rapidly evolving
technological landscape.

Continue practicing, experimenting, and building small projects. Embrace challenges, debug
errors as learning opportunities, and remember that every line of code you write strengthens

your understanding and capability. The world of technology awaits your contributions!

https://gamma.app/?utm_source=made-with-gamma

