
Python Notes for Class 11 3 Complete
Guide (2025)
Learn the basics of Python step by step with examples and practice

By Webdox Computer Institute

https://gamma.app/?utm_source=made-with-gamma

Introduction to Python

What is Python?

Python is a high-level programming language that's
easy to learn and powerful to use. Created by Guido
van Rossum in 1991, Python has become one of the
most popular languages in the world.

Key Features

Simple and readable syntax

Open-source and free

Works on all operating systems

Huge community support

Thousands of libraries available

Artificial Intelligence
Machine learning and AI development

Web Development
Building websites and web apps

Data Science
Analyzing and visualizing data

Automation
Automating repetitive tasks

https://gamma.app/?utm_source=made-with-gamma

Python Installation and Setup
01

Download Python
Visit python.org and download the latest
version for your operating system (Windows,
Mac, or Linux).

02

Install Python
Run the installer and make sure to check "Add
Python to PATH" during installation. This
allows you to run Python from anywhere on
your computer.

03

Choose Your Editor
You can use IDLE (comes with Python) or
install VS Code for a better coding experience.
Both are great for beginners.

04

Write Your First Program
Open your editor and type your first line of
code. It's that simple to get started!

Your First Python Program

print("Hello, Python!")
print("Welcome to Class 11 Programming!")

Output:

Hello, Python!
Welcome to Class 11 Programming!

https://www.python.org/
https://gamma.app/?utm_source=made-with-gamma

Python Basics

Keywords and Identifiers

Keywords are reserved words in Python that
have special meanings. Examples: if, for,
while, def, class

Identifiers are names you give to variables,
functions, and other objects. Rules:

Must start with a letter or underscore

Can contain letters, numbers, and
underscores

Cannot be a keyword

Case-sensitive (age and Age are different)

name = "Rahul"
age = 16
height = 5.8
is_student = True

Variables

Variables store data values. In Python, you
don't need to declare the type 3 Python
figures it out automatically!

Data Types in Python

marks = 95

Integer (int)
Whole numbers

price = 99.50

Float
Decimal numbers

name = "Python"

String (str)
Text in quotes

passed = True

Boolean (bool)
True or False

Input and Output Functions

name = input("Enter your name: ")
age = int(input("Enter your age: "))
print("Hello,", name, "! You are", age, "years old.")

https://gamma.app/?utm_source=made-with-gamma

Operators in Python

1

Arithmetic Operators
Used for mathematical calculations

+ Addition: 5 + 3 = 8

- Subtraction: 5 - 3 = 2

* Multiplication: 5 * 3 = 15

/ Division: 10 / 2 = 5.0

// Floor Division: 10 // 3 = 3

% Modulus: 10 % 3 = 1

** Exponent: 2 ** 3 = 8

2

Relational Operators
Compare two values and return True or
False

== Equal to: 5 == 5 is True

!= Not equal: 5 != 3 is True

> Greater than: 5 > 3 is True

< Less than: 3 < 5 is True

>= Greater or equal: 5 >= 5 is True

<= Less or equal: 3 <= 5 is True

age = 16
if age > 13 and age < 20:
 print("Teenager")

3

Logical Operators
Combine multiple conditions

and Both must be True

or At least one must be True

not Reverses the condition

4

Assignment Operators
Assign values to variables

= Assign: x = 5

+= Add and assign: x += 3 (x = x + 3)

-= Subtract and assign: x -= 2

*= Multiply and assign: x *= 2

/= Divide and assign: x /= 2

https://gamma.app/?utm_source=made-with-gamma

Conditional Statements
Conditional statements let your program make decisions based on conditions. Think of it like a
flowchart where your code takes different paths based on whether something is true or false.

marks = 85

if marks >= 75:
 print("You got Grade A!")
 print("Excellent work!")

age = 15

if age >= 18:
 print("You can vote!")
else:
 print("You cannot vote yet.")

Basic If Statement

Output: You got Grade A! Excellent work!

If-Else Statement

Output: You cannot vote yet.

If-Elif-Else Statement

Use elif (else if) when you have multiple conditions to check.

marks = 82

if marks >= 90:
 grade = "A+"
elif marks >= 75:
 grade = "A"
elif marks >= 60:
 grade = "B"
elif marks >= 45:
 grade = "C"
else:

grade = "F"

https://gamma.app/?utm_source=made-with-gamma

Loops in Python
Loops help you repeat a block of code multiple times without writing it again and again. Python
has two types of loops: for and while.

for i in range(1, 6):
 print(i)

For Loop
Used when you know how many times to
repeat

Output: 1 2 3 4 5

count = 1
while count <= 5:
 print(count)
 count += 1

While Loop
Repeats as long as a condition is True

Output: 1 2 3 4 5

for i in range(1, 11):
 if i == 6:
 break
 print(i)

Break Statement

Stops the loop immediately

Output: 1 2 3 4 5

for i in range(1, 6):
 if i == 3:
 continue
 print(i)

Continue Statement

Skips the current iteration

Output: 1 2 4 5

Practical Example: Sum of Numbers

numbers = [10, 20, 30, 40, 50]
total = 0

for num in numbers:
 total += num

print("Sum:", total)

Output: Sum: 150

https://gamma.app/?utm_source=made-with-gamma

Strings and Lists

text = "Python Programming"

Indexing (0-based)
print(text[0]) # P
print(text[-1]) # g

Slicing
print(text[0:6]) # Python
print(text[7:]) # Programming

Working with Strings

A string is a sequence of characters enclosed in
quotes. Strings are one of the most commonly
used data types in Python.

Common String Methods

upper() - Converts to uppercase

lower() - Converts to lowercase

strip() - Removes whitespace

replace() - Replaces characters

split() - Splits into a list

len() - Returns length

Working with Lists

A list is a collection of items that can be of different types. Lists are ordered, changeable, and
allow duplicate values.

fruits = ["apple", "banana", "cherry", "date"]

Accessing elements
print(fruits[0]) # apple
print(fruits[-1]) # date

Modifying lists
fruits.append("elderberry") # Add to end
fruits.insert(1, "avocado") # Insert at position

https://gamma.app/?utm_source=made-with-gamma

Tuples and Dictionaries

coordinates = (10, 20, 30)
print(coordinates[0]) # 10

This will cause an error:
coordinates[0] = 15

Tuples

A tuple is similar to a list, but it's immutable
3 once created, you cannot change its values.
Tuples are faster and safer for data that
shouldn't change.

Key Differences

List: Use square brackets [], changeable

Tuple: Use parentheses (), unchangeable

student = {
 "name": "Priya",
 "age": 16,
 "grade": "A",
 "school": "DPS"
}

print(student["name"]) # Priya
print(student["grade"]) # A

Add new entry
student["city"] = "Delhi"

Modify existing entry
student["age"] = 17

Dictionaries

A dictionary stores data in key-value pairs.
Think of it like a real dictionary where you
look up a word (key) to find its meaning
(value).

Dictionary Methods

student.keys()

keys()
Returns all keys

student.values()

values()
Returns all values

student.items()

items()
Returns key-value pairs

student.get("name")

get()
Safe way to access values

https://gamma.app/?utm_source=made-with-gamma

Functions, File Handling & Practice
Programs

def add_numbers(a, b):
 result = a + b
 return result

answer = add_numbers(10, 5)
print(answer) # 15

Writing to a file
file = open("data.txt", "w")
file.write("Hello, Python!")
file.close()

Reading from a file
file = open("data.txt", "r")
content = file.read()
print(content)
file.close()

Functions in Python

A function is a reusable block of code that
performs a specific task. Functions help
organize code and avoid repetition.

File Handling Basics

Python can read and write files easily.

Practice Programs for Class 11 Exams

a, b, c = 10, 25, 15
largest = max(a, b, c)
print(largest)

Find Largest Number

word = "radar"
if word == word[::-1]:
 print("Palindrome")

Check Palindrome

https://gamma.app/?utm_source=made-with-gamma

File Handling in Python
File handling is an essential part of any application that needs to store and retrieve data.
Python makes it easy to work with files, allowing you to read data from them, write new data to
them, or append existing content.

Open a File

Use the open() function to get a file
object. This function requires the file
path and the mode.

Read from a File

Once opened, use methods like read(),
readline(), or readlines() to access the
content.

Write to a File

Use the write() or writelines() method to
add text to the file. Be careful with write
mode as it overwrites existing content.

Close a File

Always close the file using close() to free
up resources. The with statement is
recommended for automatic closing.

File Modes

When opening a file, you specify a mode
indicating how the file will be used:

"r" - Read mode (default). Error if file
doesn't exist.

"w" - Write mode. Creates file if it doesn't
exist, overwrites if it does.

"a" - Append mode. Creates file if it
doesn't exist, adds to end if it does.

"x" - Create mode. Creates a new file,
errors if it exists.

"t" - Text mode (default). For text files.

"b" - Binary mode. For non-text files like
images or executables.

Reading from a File: Examples

https://gamma.app/?utm_source=made-with-gamma

Practical Programs & Exam Preparation
To solidify your understanding of Python concepts, consistent practice is crucial. The following
program types are essential for building foundational skills and preparing for your Class 11
exams. We've already covered code examples for these in previous sections; focus on
understanding the logic and applying variations.

Finding Largest Number
Master comparison operators and
conditional logic.

Checking Palindromes
Strengthen string manipulation and
reversal techniques.

Counting Vowels/Characters
Reinforce looping through strings and
character checks.

Sum of Even Numbers
Practice iteration and conditional
summation within lists or ranges.

Common Errors and Debugging Tips
Understanding common errors and how to debug them is a vital skill for any programmer. Don't
be discouraged by errors; view them as opportunities to learn.

Correct
if x > 0:
 print("Positive")

Incorrect
if x > 0:
print("Positive") #
IndentationError

Indentation Errors
Python relies heavily on
consistent indentation.
Incorrect spacing (e.g.,
mixing spaces and tabs,
or inconsistent indent
levels) will lead to
IndentationError. Always
use 4 spaces for
indentation.

Incorrect
name = "Alice"
age = 20
print(name + age)
TypeError

Correct
print(name +

Type Errors
Occur when an
operation is performed
on an inappropriate data
type (e.g., adding a
string to an integer).
Python is strongly
typed, so explicit type
conversion might be
needed.

Example of a
logical error
(intended sum 1 to
5, but range is 0 to
4)
total = 0

Logical Errors
These are the trickiest.
Your code runs without
crashing, but produces
incorrect results. They
require careful review of
your algorithm, variable
values, and conditional
logic. Use print()
statements or a
debugger to trace
execution.

https://gamma.app/?utm_source=made-with-gamma

Conclusion
As we wrap up our comprehensive guide to Python for Class 11, it's clear that you've built a
robust foundation in programming. We've journeyed through the core concepts, from
understanding basic data types and operators to mastering conditional statements and loops
for control flow. You've learned to manipulate data structures like strings, lists, tuples, and
dictionaries, and discovered the power of functions to write reusable code. Finally, we explored
file handling, equipping you with the ability to manage external data effectively.

Python is more than just a subject for exams; it's a versatile tool that opens doors to countless
possibilities. The skills you've acquired are highly transferable and will serve as a crucial
stepping stone for future academic and professional endeavors.

Unlocking Career
Opportunities
Python is a cornerstone
in fields like Artificial
Intelligence, Machine
Learning, Data Science,
Web Development, and
Automation. Your
foundational knowledge
prepares you for
advanced studies and a
wide array of high-
demand tech roles.

Enhancing Problem-
Solving Skills
Programming inherently
teaches you to break
down complex problems
into manageable steps.
This logical thinking and
structured approach are
invaluable life skills,
applicable far beyond
coding.

Foundation for Future
Innovation
The concepts learned
here are universal across
many programming
languages. By
understanding Python,
you're not just learning
one language, but
developing a
computational mindset
that will allow you to
adapt and innovate in a
rapidly evolving
technological landscape.

Continue practicing, experimenting, and building small projects. Embrace challenges, debug
errors as learning opportunities, and remember that every line of code you write strengthens
your understanding and capability. The world of technology awaits your contributions!

https://gamma.app/?utm_source=made-with-gamma

